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When art meets science.the overlap of practice,

surgery, structure and improvisation.
The first 50 years of cardiovascular surgery (CVS)were char-
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acterized by the development of new operations with pro-
gressive improvement in outcomes. Improvement in
imaging techniques, particularly 3-dimensional (3D) imag-
ing, facilitates surgical planning. The steps of an operation
can range from highly predictable to markedly variable de-
pending on the complexity of the defect. The orchestration
of an operation includes structured steps and improvised
steps. Superior performance and genuine expertise requires
deliberate practice (DP), which involves improving the skills
you already have and extending the reach and range of your
skills. DP is defined as focused and repeated tasks to improve
performance with coaching and immediate feedback.1,2

Current expectations by the public and the profession for
perfection in health care emphasize the importance of
continuous improvement with ongoing training and
mentoring of surgical teams to improve outcome. The
purpose of this review is to highlight the critical connection
among advanced imaging, DP, structure, and improvisation
as an approach to achieving surgical perfection.
CARDIAC SURGERY: THEN AND NOW
The earliest era of CVS (1950s-1970s) was marked by the

application of cardiopulmonary bypass for intracardiac
repair of congenital heart defects (eg, tetralogy of Fallot).
Imaging included x-ray fluoroscopy and cardiac catheteri-
zation. Anatomic detail was unsophisticated. Relatively
few institutions performed CVS, and operative mortality
was high (25%-50%). In the mid-1970s, outcomes
improved with the development of cardioplegia for myocar-
dial protection. Despite improving results, the decision to
not offer surgery for some complex lesions was not uncom-
mon. Ultrasound (echocardiography), computed tomogra-
phy (CT), and magnetic resonance imaging (MRI) started
to be used clinically in the 1970s, but mainly for noncardiac
The Journal of Thoracic and Car
applications. Cardiac applications using these technologies
began in earnest in the 1980s.
The 1980s were notable for neonatal corrective procedures

(eg, arterial switch). Imaging improved with the use of
transesophageal echocardiography (TEE), and operative
mortality was less than 10% for many lesions. As the pace
of innovation plateaued, emphasis shifted to improving early
outcome. Procedures were now available in most metropo-
litan areas as children’s hospitals proliferated and hope and
gratitude emerged for patients with more complex defects.
Today, CVS uses sophisticated imaging (echocardiogra-

phy, CT, and MRI) with virtual or printed models available
on request for surgical planning or education. Surgery is
almost always offered even for the most complex defects.
There is now pressure for perfection to further reduce oper-
ative mortality to less than 2%, and public reporting of out-
comes are becoming universal.
Despite expectations for near perfection in surgical

outcome, graduate medical education is being transformed
from a time-based apprenticeship into a competency-based
model. This paradigm change, coupled with restrictions on
resident duty hours, has generated a need to focus
training.3,4 Patients come to hospitals for treatment and
not to aid education, and patient safety and quality of care
priorities far outweigh clinical training requirements. In
this context, it is challenging to acquire proficiency in
diovascular Surgery c Volume 154, Number 4 1329
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surgical procedures that require repetitive exposure and
complex integration of cognitive knowledge with manual
dexterity. Although simulators have been used, their role
is limited to acquisition of basic surgical skills. However,
there is evidence of clinical transferability of these
simulator-acquired skills, and their efficacy and value
have been established.5-7

ADVANCED IMAGING
The development of ultrasound, CT, andMRI allowed for

the advancement from planar (2-dimensional) imaging to
volumetric (3D) imaging. Current technology allows for
high-resolution, 3D analysis of cardiac structure and phys-
iology. CT and MRI both have undergone significant
advancement since the introduction in the 1970s. Both
initially produced low-resolution images that took minutes
to obtain and hours to process. Present-generation CT
scanners can image the heart in seconds with submillimeter
resolution.8 Current MRI allows for high-resolution
images with high spatial and temporal resolution to be ob-
tained and can be used to measure intracardiac flows.8,9

Three-dimensional volumetric image datasets can be ob-
tained with both modalities that allow cardiac and surround-
ing structures to be viewed in any plane or in 3D
representations.

The 3D volumetric imaging data, combined with other
new technologies, is being used to advance preoperative
planning. Using a 3D printer to create detailed physical
models provides a more intuitive replica of complex anat-
omy (Figure 1). In addition, anatomic and flow data pro-
vided from this advanced imaging can be combined with
advanced computer simulation techniques and allow
FIGURE 1. 3D virtual printed model of a heart
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surgical procedures to be virtually simulated. Such simula-
tions could facilitate the optimal preoperative planning of
surgical procedures, for example, optimal Fontan conduit
geometry, to be determined virtually by simulating
flow through multiple conduit geometries before actual
surgery.10

Doing the Operation Before Doing the Operation
In addition to 3D imaging to better understand the anat-

omy to facilitate an operation, 3D models can be printed
in advance to allow practice of the procedure before
entering the operating room. Expertise in CVS, for example,
mitral valve (MV) repair, requires years of training and
practice. Despite being performedworldwide, surgical man-
agement of MV disease is not uniform across centers and
surgeons.11 Because each MV is anatomically and function-
ally unique and can be operated on only once in a given pa-
tient, there are limited opportunities to practice MV repair
techniques. The options for simulator-based DP of MV
repair techniques are limited. Virtual and in vitro animal
models have been used for MV repair training.12,13 These
generic task trainers have limited external validity in the
clinical setting because they lack patient specific anatomic
peculiarities that require a modification of surgical
technique. Therefore, the current model of training in MV
surgery is based on a prolonged period of observation
with limited participation in the actual surgical procedure.
This variation in trainee exposure may explain the
unpredictable nature of MV repair and surgical results.

Patient-specific abnormalities, for example, MV pathol-
ogy or hypertrophic cardiomyopathy, are printed using 3D
TEE or CT data.14-17 This is followed by 3D printing of
with Ebstein anomaly. RV, Right ventricle.
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FIGURE2. A, 3D printedmodel of a normalMV (shown in blue) obtained fromCT imaging data. B, 3DTEE of theMV from the left atrial perspective. The

black arrow is pointing at a flail middle scallop of the anterior mitral leaflet (A2) with several torn chordae tendineae also seen attached to the flail scallop.
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the heart with MV leaflets/subvalvar apparatus
demonstrating the abnormality (Figure 2, A). In the setting
of obstructive hypertrophic cardiomyopathy, dimensions of
the ventricular septum (thickness, extent down into the
ventricle, free wall thickness) in addition to MVabnormal-
ities are identified in the 3D printed model. With advancing
technology, individual anatomic areas of the heart or com-
plete heart models with realistic tissue thickness and consis-
tency are created and available for education or
preoperative rehearsal.
FIGURE 3. Using 3D printedMVin a hemodynamic testing chamber. A, Data f

using Philips Qlab (Philips Medical Systems, Andover, Mass). B, The data are th

of the MV. Once segmented, the data are exported as a stereo lithography file to

used to generate a flexible silicone model of the MV (D), which could then be
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In the setting of the MV, the TEE-generated model
(Figure 2, B) can be hemodynamically tested and imaged
in a pulse duplicator (Figure 3).18 With the image acquisi-
tion to print time becoming shorter, 3D printing of the path-
ologic abnormality (eg, the MV) is becoming point of care
in nature. Tangible models of patient specificMV pathology
can be printed before the operation. Trainees can execute
the planned technique with immediate feedback and oppor-
tunities for repeated refinement before the actual operation
and then duplicate the observed technique after the
rom the 3D TEEmachine are obtained and converted to Cartesian DICOMs

en imported into Mimics (Materialise, Leuven, Belgium) for segmentation

3matic (Materialise, Leuven, Belgium) and loaded onto a flange (C) that is

used for hemodynamic testing in the pulse duplicator (E).

diovascular Surgery c Volume 154, Number 4 1331
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procedure. Therefore, it is possible to create a patient spe-
cific MV model for DP before and after the operation.

It is also possible to use videos of prior operations, where
trainees practice on a given MV model until mastery, watch
the video, and then duplicate the observed procedure on the
model. When a trainee identifies a particular technical prob-
lem, it is possible to provide a list of relevant cases from a
library of past cases that facilitates remediation. The use of
past cases with video/audiotapes and immediate instructor
feedback has been applied in medicine.19 Gradual accumu-
lation of data could introduce an element of uniformity of
MV repair techniques. This leads to consistency of tech-
niques among surgeons and may allow validation and com-
parison of new repair techniques and could ultimately play a
role in eventual best practices. These 3D printed models
have the ability to offer simultaneous qualitative and quan-
titative improvements in surgical training.20-22

DELIBERATE PRACTICE AND ACHIEVING
EXPERTISE

Traditional methods of education involving lectures,
group discussions, and observing experts’ demonstrations
are not effective methods for developing superior perfor-
mance and genuine expertise. Studies have demonstrated
how expert musicians developed mastery of their instrument
by predominantly engaging in individualized practice activ-
ities with immediate feedback that had been designed by
their teachers.1,2 Improvements in the performer’s ability to
plan, modify, assess, and evaluate their performance
mediate increases in skill.2,19 When individuals with
superior performance and patient outcomes are identified,
their superior performance can be reproduced, replicated,
and measured in the laboratory, or in our situation, the
hospital environment (outcomes reports, bypass and
crossclamp times, morbidity, and mortality).

To attain expert performance, it is necessary for the
trainee to engage in substantial, specific, and sustained ex-
ercises to do something one does not do well, or perhaps,
does not do at all.23 If one considers coronary artery bypass
grafting as an example in CVS residency, it is reasonable to
assume that the senior resident knows how to handle surgi-
cal instruments and tie knots. Command of basic skills is
essential at this stage, for example, perfecting needle pas-
sage through butter that results in a series of dots at the
entrance/exit sites as opposed to creating lines/grooves
that reflect a lack of honoring the curve of the needle. The
more advanced exercise to be practiced now is loading the
needle correctly (once), taking the stitch in the precise loca-
tion (once), following through, and reloading (again, only
once) until the anastomosis is completed, that is, optimizing
efficiency. Placement of the needle/suture should be precise
and consistent from bite to bite. It also requires knowing
which bites are more easily done forehand versus backhand.
Specifically, DP involves building a complex skill, and after
1332 The Journal of Thoracic and Cardiovascular Sur
mastery of fundamental skills, the focus turns to progres-
sively more difficult steps. Once this exercise is mastered,
the degree of difficulty is increased again. This may include
repeating the same exercise with a smaller distal vessel, us-
ing a more fragile conduit, or making the exposure more
difficult, for example, a deep chest in a large patient.

Expert performance requires acquisition of integrated
skills that allow planning, monitoring, and evaluation to
gradually refine prior skills. Consequently, there is no quali-
tative difference between improving preexisting skills and
learning a new relevant skill.2,19 These 2 tasks require
arduous concentration, which limits the amount of time
one can spend doing them. The famous violinist Nathan
Milstein said, ‘‘practice as much as you feel you can
accomplish with concentration.’’ Once when I became
concerned because others around me practiced all day
long, I asked my mentor, Professor Auer how many hours I
should practice, and he said, ‘‘it really doesn’t matter how
long. If you practice with your fingers, no amount is
enough. If you practice with your head, two hours is plenty.’’

Simulation as a method to improve surgical skills is now
a part of postgraduate medical education. Simulation oppor-
tunities in CVS include assessment tools for cognitive
knowledge, patient scenarios, disease management, opera-
tive planning, technical skills, judgment, leadership, and
crisis management.24,25 Simulators may be organic or
inorganic.26 Organic simulators include live animal models
or fresh human cadavers; inorganic simulators include syn-
thetic bench models or virtual reality simulators (eg, robotic
or bronchoscopy simulators). Simulation, particularly vir-
tual reality simulation, provides a mechanism for immedi-
ate performance feedback and objective assessment.
Current literature demonstrates that simulation positively
correlates with improvements in efficiency and surgical out-
comes.5,12,27-33

Within the theoretic framework of expert performance,
the focus is always on objective measures of performance
or patient outcomes. Consequently, the best measure of sur-
geon performance is analysis of the preplanning procedure,
operative video, postoperative result, and long-term patient
outcome. A Canadian neurosurgeon analyzed all adverse
events for his operations and was able to work with his sur-
gical team to dramatically reduce most adverse events.34

Studies of larger groups of cancer surgeons show a learning
curve (at least spanning the first 250 operations) for recur-
rence of prostate cancer after robotic prostatectomy.35,36

How much time would be required to reach one’s peak
performance?37 When we look at other domains of exper-
tise besides surgery, there is an interesting relation between
amount of practice and performance. Over the last cen-
turies, the amount and quality of practice for musicians
and athletes have increased substantially, and in parallel
there are large increases in performance. Today, music stu-
dents are able to perform music pieces that only a single
gery c October 2017
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musician in the world was able to perform a century ago.
Amateur marathon runners are able to match the perfor-
mance of Olympic medal winners during the first few
Olympics.

In most other professions, the most gifted performers
need a minimum of 10 years or 10,000 hours before they
win international competitions (Figure 4).1 This timeline
also seems to be similar in surgery. Surgical residency is
usually 5 years, and some surgical subspecialties (eg,
CVS or neurosurgery) are 6 to 8 years depending on addi-
tional subspecialty training. When a surgeon begins prac-
tice, it is common knowledge that competence and
credibility require a learning curve and timeline of approx-
imately 5 years. Thus, it is reasonable to assume that the
time to achieve expertise in a field like CVS is 10 to 15 years
(residency and early staff years). In addition to DP by the
surgeon, the success of an operation also depends on collab-
oration and performance of the surgical team. The impor-
tance of continued practice and repetition of operations by
the (same) teammembers is essential and results in consum-
mate team experience. This cannot be overemphasized.
There are now team training activities in which the trainer
induces critical events, for example, interruptions while
matching blood types,38 and thus life-threatening errors
can enhance the ability to react appropriately in the future
when untoward events recur.

The most effective way to apply essential aspects of DP
to surgical performance involves reviewing videos of actual
operations (with/without faculty present) and then
analyzing the procedure to identify areas of individual or
team performance that could be improved. Once the weak-
nesses have been identified, DP activities can be designed
for improvement outside of the operating room with moni-
toring during the next operation. The honing of these highly
specific skills is an example of how DP could be applied
with simulation. Given the complexity of CVS, necessity
for teamwork, and the critical nature of outcomes, under-
standing the difference between the amounts of time spent
FIGURE 4. The effect of DP for a professional violinist.1
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versus the acquisition and integration of new knowledge
is critical in designing time-sensitive, effective forms of DP.
Instead of the effortful monitoring of actual performance

to demonstrate superior outcomes, it has been popular to
look for simple solutions to define expertise. In surgery,
the surgeon is required to complete a particular number of
procedures to be credentialed to practice independently.
In support of the ‘‘10,000 hour’’ rule, Gladwell39 cited
research on musician expertise.21 Although this research
focused on DP as ‘‘the individualized training activities spe-
cifically designed by a coach/teacher to improve certain as-
pects of an individual’s performance through repetition and
successive refinement.’’40

It has been common for scientists to be confused about
the definition of DP. In a recent meta-analysis of the relation
between amount of accumulated practice and attained
achievement, Macnamara and colleagues41 estimated the
number of hours of DP by including hours attending lec-
tures, hours of group discussion, and hours spent playing
matches. In another meta-analysis, Macnamara and col-
leagues42 estimated the accumulated hours in DP in sports
by summed hours for playing matches, team practice,
watching sports on television, and other activities.43 Conse-
quently, these meta-analyses summed hours of all types of
practice to form a single sum and found that these sums pre-
dicted only approximately 20% of variance of perfor-
mance. This estimate does not measure the effectiveness
of individualized practice activities with immediate feed-
back that has been designed by a teacher, and the few esti-
mates for DP are higher.37

Even after practice supervised by a teacher stops at the
start of independent practice, continuous self-assessment
and feedback from peers and mentors are essential to obtain
and maintain expertise, particularly surgery. Technical
expertise progressively improves with DP and can be quan-
tified by outcome metrics, for example, length of time for
dissection, time to perform an anastomosis, bypass and
crossclamp times, morbidity, and mortality. However, ulti-
mate success in surgery also requires skills that are more
difficult to quantify. These skills include critical thinking,
decision-making, and judgment. The combination of tech-
nical abilities, team performance, and these other skill
sets result in experience. Progressive experience over a
career can diminish cognitive effort to perform certain
tasks, which allows for the development of increased situa-
tional awareness and intraoperative flexibility as the sur-
geon/team spend less cognitive effort on those portions
that have been practiced and mastered.

STRUCTURE AND IMPROVISATION: THE MUSIC
METAPHOR
Integrating the concepts of structure and improvisation is

critical in many professions, for example, sports, games,
music, surgery, and life (Figure 5). Structure and
diovascular Surgery c Volume 154, Number 4 1333
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Unknowns 
Changing plans 
Less reproducible 

Errors 
Variable outcome 

FIGURE 5. Contrast of the structure/improvisation continuum.
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improvisation, as they apply to the art of surgery, have a va-
riety of important parallels with the art of jazz improvisa-
tion. To introduce this generative metaphor, it may be
helpful to distinguish the difference between jazz impro-
visers and classical musicians (Figure 6).

Structure is intrinsic in nearly every aspect of classical
music. The composer creates a score in which every choice
of pitch or rhythm is absolutely defined. The performer’s
job is not to change or improve the information on the score,
but to translate from design into music the beauty of an idea
that is absolute or closed out in terms of possible outcomes.
Beethoven’s Fifth Symphony may be performed with
greater or lesser esthetic acumen but, note for note, it is al-
ways the samemusical idea. Classical music has a very high
level of predictability and a very low level of improvisation.

In contrast, jazz musicians work in a context of low pre-
dictability where both structure and the skill of improvisa-
tion are intrinsic. In jazz, there are cognitively held rules
©2011 MFMER  |  slide-3 
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FIGURE 6. The structure/improvisation continuum in music, sports, and

life. Some professions are intrinsically more structured, whereas others

require more improvisation.
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for musical innovation. The harmonies and melody of the
tune are, in fact, non-negotiable. However, the jazz musi-
cian is given the autonomy to interpret the original score
and embellish it, and at the time of the solo is permitted
to deviate further away from the original score and sponta-
neously create new music while following the original
pattern of harmonic changes. This requires intense acuity
in communication, both listening and speaking (with their
respective instrument) between the soloist and the other mu-
sicians in the ensemble. Great jazz performances occur
when whole-system thinking is embraced by everyone in-
volved.cross-functional relationships, real-time sharing
of firsthand knowledge, highly attuned skills of listening,
and in-the-moment design thinking.

The jazz ensemble is a cohesive team similar, in essence,
to the surgical team performing an operation, with the sur-
geon as the lead instrument or soloist and the other oper-
ating room staff functioning as the supporting ensemble.
Success of the operation requires communication, familiar-
ity, and intense cross-functional understanding (and experi-
ence) by everyone participating. Like jazz, to respond both
physically and cognitively to suddenly changing conditions,
both mind and body must function as a seamlessly inte-
grated whole.

The highest level of performance in jazz happens when
physical technique becomes invisible. During a perfor-
mance, the musicians are somatically conjoined. Any indi-
vidual hesitation (mental or physical) has immediate impact
on the fluidity of the system as a whole. Improvisation icons
such as Louis Armstrong and Charlie Parker demonstrate a
quality of deliberation that informs every aspect of their
playing. It is understood in jazz, you play what you practice.
This concept also applies to the operating theatre, where
surgery and the team are analogous to the musical perfor-
mance and the ensemble. Obviously, we are not suggesting
that surgeons and their teams are improvising in the same
manner that jazz musicians do, but there are parallels be-
tween the 2 disciplines, particularly with regard to DP
that can be of practical value. The importance of having a
command of structure (music score vs choreography of
the operation), basic techniques and repetitions combined
with knowledge of potential variables, and unique anat-
omy/pathology based on modern imaging help anticipate
and prepare for improvisation during the procedure.

The relationship between DP and the acquisition of
improvisational skills indicates that it is possible to achieve
responsive capability that is highly attuned to subtle percep-
tual information and has a vast array of finely timed and
tunable motor programs available.44 This results in the qual-
ities of efficiency, fluency, flexibility, and expressiveness.
All motor organization functions can be handled without
explicit attention to details, and the performer attends
almost exclusively to a higher level of emergent expressive
control parameters.44-47 The preparation for improvisation
gery c October 2017
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in terms that infer a high level of deliberate approach means
the idea of preparation is very important for improvisation,
where real-time cognitive processing often is pushed near
its attention limits.48 For improvised performance that
aims at artistic presentation, in which discrepancies be-
tween intention and result must be kept within strict bounds,
practice must attempt to explore the full range of possible
motor actions and musical effects to enable both finer con-
trol and the internal modeling of discrepancies and correc-
tion procedures, including feed-forward. In short, mastery
of structure with DP facilitates eventual mastery of
improvisation.
Structure and Improvisation in Cardiac Surgery
Surgery and the steps of an operation can range from

highly predictable to markedly variable depending on the
complexity of the defect (Figure 7). CVS operations that
are simple or straightforward (eg, atrial septal defect
closure, coronary bypass grafting) are typically set up and
performed the same way every time. The operation is neatly
orchestrated, structured, and reproducible. Deliberate and
independent practice with memorization of steps and repe-
tition of the technical aspects of the procedure can improve
accuracy and efficiency of the procedure. The overall result
and expected outcome are excellent and reproducible. This
would be the equivalent of classical music. On the other
hand, complex operations (eg, Ebstein anomaly and pros-
thetic valve endocarditis) or procedures using new technol-
ogy often require more preparation, more practice, and
advanced imaging. Although various aspects of the proced-
ure are structured and reproducible, there are many other
©2011 MFMER  |  slide-5 
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FIGURE 7. Structure/improvisation continuumwith cardiac surgical pro-

cedures. Some are predictable and reproducible, and others are more vari-

able. Advanced imaging and DP can facilitate moving the operation more
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grafting; Tx, transplant; DCM, dilated cardiomyopathy; PA, pulmonary

atresia; MAPCA, major aortopulmonary collateral; PV, prosthetic valve;

AVSD, atrioventricular septal defect.
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steps that are less certain and the surgeon must adapt and
improvise through forthcoming steps. The expected result
is less certain and more vulnerable to error. This would be
equivalent to jazz. Although all types of surgery will always
involve a combination of structured steps and improvised
steps, advanced imaging, DP, and more experience facili-
tates a greater proportion of any procedure being more
structured, which can facilitate an approach toward surgical
perfection and optimize outcome.
With these questions in mind, it would seem that the

concept of DP from the field of jazz improvisation would
support the argument that DP for surgeons performing com-
plex procedures or using robotics to successfully carry out
highly specialized procedures in which the need for incre-
mental levels (or higher) of improvisation can occur is
both appropriate and essential.

CONCLUSIONS
Advances in anatomic imaging, specifically 3D printed

models, can facilitate preoperative practice of the planned
surgical procedure. Expert performance, particularly in sur-
gery, requires both deliberate and independent practice. The
orchestration of an operation involves structured steps (ie,
predictable and reproducible) and improvised steps (ie,
spontaneous adaptation because of complexity or unex-
pected findings). Although every operation involves a com-
bination of both structured and improvised steps, the more
structure that can be applied to a procedure, the greater
the likelihood of a predictably good outcome. To achieve
surgical perfection, surgeons should focus their efforts on
continuous improvement by integrating advanced imaging
with DP routines designed for highly specific events so op-
erations can be choreographed in a manner that optimizes
the structure/improvisation continuum.
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